Ядерный магнитный резонанс. Области применения ЯМР. ЯМР для «чайников», или Десять основных фактов о ядерном магнитном резонансе Явление магнитно ядерного резонанса

Ядерный магнитный резонанс. Области применения ЯМР. ЯМР для «чайников», или Десять основных фактов о ядерном магнитном резонансе Явление магнитно ядерного резонанса
Ядерный магнитный резонанс. Области применения ЯМР. ЯМР для «чайников», или Десять основных фактов о ядерном магнитном резонансе Явление магнитно ядерного резонанса

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг , который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

Энциклопедичный YouTube

  • 1 / 5

    В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер, состоящих из нуклонов с полуцелым спином 1/2, 3/2, 5/2…. Ядра с чётными массовым и зарядовым числами (чётно-чётные ядра) не обладают магнитным моментом.

    Угловой момент и магнитный момент ядра квантованы, и собственные значения проекции и углового и магнитного моментов на ось z произвольно выбранной системы координат определяются соотношением

    J z = ℏ μ I {\displaystyle J_{z}=\hbar \mu _{I}} и μ z = γ ℏ μ I {\displaystyle \mu _{z}=\gamma \hbar \mu _{I}} ,

    где μ I {\displaystyle \mu _{I}} - магнитное квантовое число собственного состояния ядра, его значения определяются спиновым квантовым числом ядра

    μ I = I , I − 1 , I − 2 , . . . , − I {\displaystyle \mu _{I}=I,I-1,I-2,...,-I} ,

    то есть ядро может находиться в 2 I + 1 {\displaystyle 2I+1} состояниях.

    Так, у протона (или другого ядра с I = 1/2 - 13 C, 19 F, 31 P и т. п.) может находиться только в двух состояниях

    μ z = ± γ ℏ I = ± ℏ / 2 {\displaystyle \mu _{z}=\pm \gamma \hbar I=\pm \hbar /2} ,

    такое ядро можно представить как магнитный диполь , z-компонента которого может быть ориентирована параллельно либо антипараллельно положительному направлению оси z произвольной системы координат.

    Следует отметить, что в отсутствие внешнего магнитного поля все состояния с различными μ z {\displaystyle \mu _{z}} имеют одинаковую энергию, то есть являются вырожденными. Вырождение снимается во внешнем магнитном поле, при этом расщепление относительно вырожденного состояния пропорционально величине внешнего магнитного поля и магнитного момента состояния и для ядра со спиновым квантовым числом I во внешнем магнитном поле появляется система из 2I+1 энергетических уровней − μ z B 0 , − I − 1 I B 0 , . . . , I − 1 I B 0 , μ z B 0 {\displaystyle -\mu _{z}B_{0},-{\frac {I-1}{I}}B_{0},...,{\frac {I-1}{I}}B_{0},\mu _{z}B_{0}} , то есть ядерный магнитный резонанс имеет ту же природу, что и эффект Зеемана расщепления электронных уровней в магнитном поле.

    В простейшем случае для ядра со спином с I = 1/2 - например, для протона, расщепление

    δ E = ± μ z B 0 {\displaystyle \delta E=\pm \mu _{z}B_{0}}

    и разность энергии спиновых состояний

    Δ E = 2 μ z B 0 {\displaystyle \Delta E=2\mu _{z}B_{0}}

    Наблюдение ЯМР облегчается тем, что в большинстве веществ атомы не обладают постоянными магнитными моментами электронов атомных оболочек вследствие явления замораживания орбитального момента .

    Резонансные частоты ЯМР в металлах выше, чем в диамагнетиках (найтовский сдвиг).

    Химическая поляризация ядер

    При протекании некоторых химических реакций в магнитном поле в спектрах ЯМР продуктов реакции обнаруживается либо аномально большое поглощение, либо радиоизлучение. Этот факт свидетельствует о неравновесном заселении ядерных зеемановских уровней в молекулах продуктов реакции. Избыточная заселённость нижнего уровня сопровождается аномальным поглощением. Инверсная заселённость (верхний уровень заселён больше нижнего) приводит к радиоизлучению. Данное явление называется химической поляризацией ядер .

    Ларморовские частоты некоторых атомных ядер

    ядро Ларморовская частота в МГц при 0,5 Тесла Ларморовская частота в МГц при 1 Тесла Ларморовская частота в МГц при 7,05 Тесла
    1 H (Водород) 21,29 42,58 300.18
    ²D (Дейтерий) 3,27 6,53 46,08
    13 C (Углерод) 5,36 10,71 75,51
    23 Na (Натрий) 5,63 11,26 79.40
    39 K (Калий) 1,00 1,99

    Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м) .

    Применение ЯМР

    Спектроскопия

    Приборы

    Сердцем спектрометра ЯМР является мощный магнит . В эксперименте, впервые осуществлённом на практике Парселлом , образец, помещённый в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, а магнитное поле , действующее на неё, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности . Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте, чуть меньшей, чем ядра, лишённые электронных оболочек. Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

    Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

    В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его ещё называют методом непрерывного облучения (CW, continous wave).

    Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

    В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от ν 0 . Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких тысяч ватт .

    В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер - так называемый «спад свободной индукции» (FID, free induction decay ). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование , по которому любая функция может быть представлена в виде суммы множества гармонических колебаний .

    Спектры ЯМР

    Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

    • сигналы ядер атомов, входящих в определённые функциональные группы, лежат в строго определённых участках спектра;
    • интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;
    • ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

    Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1 Н и 13 С применяют тетраметилсилан Si(CH 3) 4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу δ. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой τ, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчёта констант экранирования и на их основании соотнести сигналы.

    ЯМР-интроскопия

    Явление ядерного магнитного резонанса можно применять не только в физике и химии , но и в медицине : организм человека - это совокупность все тех же органических и неорганических молекул.

    Чтобы наблюдать это явление, объект помещают в постоянное магнитное поле и подвергают действию радиочастотных и градиентных магнитных полей. В катушке индуктивности, окружающей исследуемый объект, возникает переменная электродвижущая сила (ЭДС), амплитудно-частотный спектр которой и переходные во времени характеристики несут информацию о пространственной плотности резонирующих атомных ядер, а также о других параметрах, специфических только для ядерного магнитного резонанса. Компьютерная обработка этой информации формирует объёмное изображение, которое характеризует плотность химически эквивалентных ядер, времена релаксации ядерного магнитного резонанса, распределение скоростей потока жидкости, диффузию молекул и биохимические процессы обмена веществ в живых тканях.

    Содержание статьи

    МАГНИТНЫЙ РЕЗОНАНС, резонансное (избирательное) поглощение радиочастотного излучения некоторыми атомными частицами, помещенными в постоянное магнитное поле. Большинство элементарных частиц, подобно волчкам, вращаются вокруг собственной оси. Если частица обладает электрическим зарядом, то при ее вращении возникает магнитное поле, т.е. она ведет себя подобно крошечному магниту. При взаимодействии этого магнитика с внешним магнитным полем происходят явления, позволяющие получить информацию о ядрах, атомах или молекулах, в состав которых входит данная элементарная частица. Метод магнитного резонанса представляет собой универсальный инструмент исследований, применяемый в столь различных областях науки, как биология, химия, геология и физика. Различают магнитные резонансы двух основных видов: электронный парамагнитный резонанс и ядерный магнитный резонанс.

    Электронный парамагнитный резонанс (ЭПР).

    Ядерный магнитный резонанс (ЯМР).

    ЯМР был открыт в 1946 американскими физиками Э.Перселлом и Ф.Блохом. Работая независимо друг от друга, они нашли способ резонансной «настройки» в магнитных полях собственных вращений ядер некоторых атомов, например водорода и одного из изотопов углерода. Когда образец, содержащий такие ядра, помещают в сильное магнитное поле, их ядерные моменты «выстраиваются» подобно железным опилкам вблизи постоянного магнита. Эту общую ориентацию можно нарушить радиочастотным сигналом. По выключении сигнала ядерные моменты возвращаются в исходное состояние, причем быстрота такого восстановления зависит от их энергетического состояния, типа окружающих ядер и ряда других факторов. Переход сопровождается испусканием радиочастотного сигнала. Сигнал подается на компьютер, который обрабатывает его. Таким путем (метод компьютерной ЯМР-томографии) можно получить изображения. (При изменении внешнего магнитного поля малыми ступенями достигается эффект трехмерного изображения.) Метод ЯМР обеспечивает высокую контрастность разных мягких тканей на изображении, что крайне важно для выявления больных клеток на фоне здоровых. ЯМР-томография считается более безопасной, нежели рентгеновская, поскольку не вызывает ни разрушения, ни раздражения тканей

    1. Суть явления

      Прежде всего, надо заметить, что хотя в названии этого явления присутствует слово «ядерный», к ядерной физике ЯМР никакого отношения не имеет и с радиоактивностью никак не связан. Если говорить о строгом описании, то без законов квантовой механики никак не обойтись. Согласно этим законам, энергия взаимодействия магнитного ядра с внешним магнитным полем может принимать только несколько дискретных значений. Если облучать магнитные ядра переменным магнитным полем, частота которого соответствует разнице между этими дискретными энергетическими уровнями, выраженной в частотных единицах, то магнитные ядра начинают переходить с одного уровня на другой, при этом поглощая энергию переменного поля. В этом и состоит явление магнитного резонанса. Это объяснение формально правильное, но не очень наглядное. Есть другое объяснение, без квантовой механики. Магнитное ядро можно представить как электрически заряженный шарик, вращающийся вокруг своей оси (хотя, строго говоря, это не так). Согласно законам электродинамики, вращение заряда приводит к появлению магнитного поля, т. е. магнитного момента ядра, который направлен вдоль оси вращения. Если этот магнитный момент поместить в постоянное внешнее поле, то вектор этого момента начинает прецессировать, т. е. вращаться вокруг направления внешнего поля. Таким же образом прецессирует (вращается) вокруг вертикали ось юлы, если ее раскрутить не строго вертикально, а под некоторым углом. В этом случае роль магнитного поля играет сила гравитации.

      Частота прецессии определяется как свойствами ядра, так и силой магнитного поля: чем сильнее поле, тем выше частота. Затем, если кроме постоянного внешнего магнитного поля на ядро будет воздействовать переменное магнитное поле, то ядро начинает взаимодействовать с этим полем - оно как бы сильнее раскачивает ядро, амплитуда прецессии увеличивается, и ядро поглощает энергию переменного поля. Однако это будет происходить только при условии резонанса, т. е. совпадения частоты прецессии и частоты внешнего переменного поля. Это похоже на классический пример из школьной физики - марширующие по мосту солдаты. Если частота шага совпадает с частотой собственных колебаний моста, то мост раскачивается всё сильнее и сильнее. Экспериментально это явление проявляется в зависимости поглощения переменного поля от его частоты. В момент резонанса поглощение резко возрастает, а простейший спектр магнитного резонанса выглядит вот так:

    2. Фурье-спектроскопия

      Первые ЯМР-спектрометры работали именно так, как описано выше - образец помещался в постоянное магнитное поле, и на него непрерывно подавалось радиочастотное излучение. Затем плавно менялась либо частота переменного поля, либо напряженность постоянного магнитного поля. Поглощение энергии переменного поля регистрировалось радиочастотным мостом, сигнал от которого выводился на самописец или осциллограф. Но этот способ регистрации сигнала уже давно не применяется. В современных ЯМР-спектрометрах спектр записывается с помощью импульсов. Магнитные моменты ядер возбуждаются коротким мощным импульсом, после которого регистрируется сигнал, наводимый в РЧ-катушке свободно прецессирующими магнитными моментами. Этот сигнал постепенно спадает к нулю по мере возвращения магнитных моментов в состояние равновесия (этот процесс называется магнитной релаксацией). Спектр ЯМР получается из этого сигнала с помощью Фурье-преобразования. Это стандартная математическая процедура, позволяющая раскладывать любой сигнал на частотные гармоники и таким образом получать частотный спектр этого сигнала. Этот способ записи спектра позволяет значительно понизить уровень шумов и проводить эксперименты намного быстрее.

      Один возбуждающий импульс для записи спектра - это самый простейший ЯМР-эксперимент. Однако таких импульсов, разной длительности, амплитуды, с разными задержками между ними и т. п., в эксперименте может быть много, в зависимости от того, какие именно манипуляции исследователю надо провести с системой ядерных магнитных моментов. Тем не менее, практически все эти импульсные последовательности оканчиваются одним и тем же - записью сигнала свободной прецессии с последующим Фурье-преобразованием.

    3. Магнитные взаимодействия в веществе

      Сам по себе магнитный резонанс остался бы не более чем занятным физическим явлением, если бы не магнитные взаимодействия ядер друг с другом и с электронной оболочкой молекулы. Эти взаимодействия влияют на параметры резонанса, и с их помощью методом ЯМР можно получать разнообразную информацию о свойствах молекул - их ориентации, пространственной структуре (конформации), межмолекулярных взаимодействиях, химическом обмене, вращательной и трансляционной динамике. Благодаря этому ЯМР превратился в очень мощный инструмент исследования веществ на молекулярном уровне, который широко применяется не только в физике, но главным образом в химии и молекулярной биологии. В качестве примера одного из таких взаимодействий можно привести так называемый химический сдвиг. Суть его в следующем: электронная оболочка молекулы откликается на внешнее магнитное поле и старается его экранировать - частичное экранирование магнитного поля происходит во всех диамагнитных веществах. Это означает, что магнитное поле в молекуле будет отличаться от внешнего магнитного поля на очень небольшую величину, которая и называется химическим сдвигом. Однако свойства электронной оболочки в разных частях молекулы разные, и химический сдвиг тоже разный. Соответственно, условия резонанса для ядер в разных частях молекулы тоже будут отличаться. Это позволяет различать в спектре химически неэквивалентные ядра. Например, если мы возьмем спектр ядер водорода (протонов) чистой воды, то в нем будет только одна линия, поскольку оба протона в молекуле H 2 O совершенно одинаковы. Но для метилового спирта СН 3 ОН в спектре будет уже две линии (если пренебречь другими магнитными взаимодействиями), поскольку тут есть два типа протонов - протоны метильной группы СН 3 и протон, связанный с атомом кислорода. По мере усложнения молекул число линий будет увеличиваться, и если мы возьмем такую большую и сложную молекулу, как белок, то в этом случае спектр будет выглядеть примерно так:

    4. Магнитные ядра

      ЯМР можно наблюдать на разных ядрах, но надо сказать, что далеко не все ядра имеют магнитный момент. Часто бывает так, что некоторые изотопы имеют магнитный момент, а другие изотопы того же самого ядра - нет. Всего существует более сотни изотопов различных химических элементов, имеющих магнитные ядра, однако в исследованиях обычно используется не более 1520 магнитных ядер, всё остальное - экзотика. Для каждого ядра есть свое характерное соотношение магнитного поля и частоты прецессии, называемое гиромагнитным отношением. Для всех ядер эти отношения известны. По ним можно подобрать частоту, на которой при данном магнитном поле будет наблюдаться сигнал от нужных исследователю ядер.

      Самые важные для ЯМР ядра - это протоны. Их больше всего в природе, и они имеют очень высокую чувствительность. Для химии и биологии очень важны ядра углерода, азота и кислорода, но с ними ученым не очень повезло: наиболее распространенные изотопы углерода и кислорода, 12 С и 16 О, магнитного момента не имеют, у природного изотопа азота 14 N момент есть, но он по ряду причин для экспериментов очень неудобен. Есть изотопы 13 С, 15 N и 17 О, которые подходят для ЯМР-экспериментов, но их природное содержание очень низкое, а чувствительность очень маленькая по сравнению с протонами. Поэтому часто для ЯМР-исследований готовят специальные изотопно-обогащенные образцы, в которых природный изотоп того или иного ядра замещен на тот, который нужен для экспериментов. В большинстве случаев эта процедура весьма непростая и недешевая, но иногда это единственная возможность получить необходимую информацию.

    5. Электронный парамагнитный и квадрупольный резонанс

      Говоря про ЯМР, нельзя не упомянуть о двух других родственных физических явлениях - электронном парамагнитном резонансе (ЭПР) и ядерном квадрупольном резонансе (ЯКР). ЭПР по своей сути подобен ЯМР, разница заключается в том, что резонанс наблюдается на магнитных моментах не атомных ядер, а электронной оболочки атома. ЭПР может наблюдаться только в тех молекулах или химических группах, электронная оболочка которых содержит так называемый неспаренный электрон, тогда оболочка имеет ненулевой магнитный момент. Такие вещества называются парамагнетиками. ЭПР, как и ЯМР, также применяется для исследований различных структурно-динамических свойств веществ на молекулярном уровне, но его область использования существенно уже. Это связано в основном с тем, что большинство молекул, особенно в живой природе, не содержит неспаренных электронов. В некоторых случаях можно использовать так называемый парамагнитный зонд, т. е. химическую группу с неспаренным электроном, которая связывается с исследуемой молекулой. Но такой подход имеет очевидные недостатки, которые ограничивают возможности этого метода. Кроме того, в ЭПР нет такого высокого спектрального разрешения (т. е. возможности отличить в спектре одну линию от другой), как в ЯМР.

      Объяснить «на пальцах» природу ЯКР труднее всего. Некоторые ядра обладают так называемым электрическим квадрупольным моментом. Этот момент характеризует отклонение распределения электрического заряда ядра от сферической симметрии. Взаимодействие этого момента с градиентом электрического поля, создаваемого кристаллической структурой вещества, приводит к расщеплению энергетических уровней ядра. В этом случае можно наблюдать резонанс на частоте, соответствующей переходам между этими уровнями. В отличие от ЯМР и ЭПР, для ЯКР не нужно внешнего магнитного поля, поскольку расщепление уровней происходит без него. ЯКР также используется для исследования веществ, но область его применения еще уже, чем у ЭПР.

    6. Преимущества и недостатки ЯМР

      ЯМР - самый мощный и информативный метод исследования молекул. Строго говоря, это не один метод, это большое число разнообразных типов экспериментов, т. е. импульсных последовательностей. Хотя все они основаны на явлении ЯМР, но каждый из этих экспериментов предназначен для получения какой-то конкретной специфической информации. Число этих экспериментов измеряется многими десятками, если не сотнями. Теоретически ЯМР может если не всё, то почти всё, что могут все остальные экспериментальные методы исследования структуры и динамики молекул, хотя практически это выполнимо, конечно, далеко не всегда. Одно из основных достоинств ЯМР в том, что, с одной стороны, его природные зонды, т. е. магнитные ядра, распределены по всей молекуле, а с другой стороны, он позволяет отличить эти ядра друг от друга и получать пространственно-селективные данные о свойствах молекулы. Почти все остальные методы дают информацию либо усредненную по всей молекуле, либо только о какой-то одной ее части.

      Основных недостатков у ЯМР два. Во-первых, это низкая чувствительность по сравнению с большинством других экспериментальных методов (оптическая спектроскопия, флюоресценция, ЭПР и т. п.). Это приводит к тому, что для усреднения шумов сигнал нужно накапливать долгое время. В некоторых случаях ЯМР-эксперимент может проводиться в течение даже нескольких недель. Во-вторых, это его дороговизна. ЯМР-спектрометры - одни из самых дорогих научных приборов, их стоимость измеряется как минимум сотнями тысяч долларов, а самые дорогие спектрометры стоят несколько миллионов. Далеко не все лаборатории, особенно в России, могут позволить себе иметь такое научное оборудование.

    7. Магниты для ЯМР-спектрометров

      Одна из самых важных и дорогих частей спектрометра - магнит, создающий постоянное магнитное поле. Чем сильнее поле, тем выше чувствительность и спектральное разрешение, поэтому ученые и инженеры постоянно пытаются получить как можно более высокие поля. Магнитное поле создается электрическим током в соленоиде - чем сильнее ток, тем больше поле. Однако бесконечно увеличивать силу тока нельзя, при очень большом токе провод соленоида просто начнет плавиться. Поэтому уже очень давно для высокопольных ЯМР-спектрометров используются сверхпроводящие магниты, т. е. магниты, в которых провод соленоида находится в сверхпроводящем состоянии. В этом случае электрическое сопротивление провода равно нулю, и выделения энергии не происходит при любой величине тока. Сверхпроводящее состояние можно получить только при очень низких температурах, всего нескольких градусов Кельвина, - это температура жидкого гелия. (Высокотемпературная сверхпроводимость - до сих пор удел только чисто фундаментальных исследований.) Именно с поддержанием такой низкой температуры и связаны все технические сложности конструирования и производства магнитов, которые обуславливают их дороговизну. Сверхпроводящий магнит построен по принципу термоса-матрешки. Соленоид находится в центре, в вакуумной камере. Его окружает оболочка, в которой находится жидкий гелий. Эта оболочка через вакуумную прослойку окружена оболочкой из жидкого азота. Температура жидкого азота - минус 196 градусов по Цельсию, азот нужен для того, чтобы гелий испарялся как можно медленнее. Наконец, азотная оболочка изолируется от комнатной температуры внешней вакуумной прослойкой. Такая система способна сохранять нужную температуру сверхпроводящего магнита очень долго, хотя для этого нужно регулярно подливать в магнит жидкие азот и гелий. Преимущество таких магнитов кроме возможности получать высокие магнитные поля также и в том, что они не потребляют энергии: после запуска магнита ток бегает по сверхпроводящим проводам практически без каких-либо потерь в течение многих лет.

    8. Томография

      В обычных ЯМР-спектрометрах магнитное поле стараются сделать как можно более однородным, это нужно для улучшения спектрального разрешения. Но если магнитное поле внутри образца, наоборот, сделать очень неоднородным, это открывает принципиально новые возможности для использования ЯМР. Неоднородность поля создается так называемыми градиентными катушками, которые работают в паре с основным магнитом. В этом случае величина магнитного поля в разных частях образца будет разная, а это значит, что сигнал ЯМР можно наблюдать не от всего образца, как в обычном спектрометре, а только от его узкого слоя, для которого соблюдаются резонансные условия, т. е. нужное соотношение магнитного поля и частоты. Меняя величину магнитного поля (или, что по сути то же самое, частоту наблюдения сигнала), можно менять слой, который будет давать сигнал. Таким образом можно «просканировать» образец по всему объему и «увидеть» его внутреннюю трехмерную структуру, не разрушая образец каким-либо механическим способом. К настоящему времени разработано большое число методик, позволяющих измерять различные параметры ЯМР (спектральные характеристики, времена магнитной релаксации, скорость самодиффузии и некоторые другие) с пространственным разрешением внутри образца. Самое интересное и важное, с практической точки зрения, применение ЯМР-томографии нашлось в медицине. В этом случае исследуемым «образцом» является человеческое тело. ЯМР-томография является одним из самых эффективных и безопасных (но также и дорогих) диагностических средств в различных областях медицины, от онкологии до акушерства. Любопытно заметить, что в названии этого метода медики не употребляют слово «ядерный», потому что некоторые пациенты связывают его с ядерными реакциями и атомной бомбой.

    9. История открытия

      Годом открытия ЯМР считается 1945-й, когда американцы Феликс Блох из Стэнфорда и независимо от него Эдвард Парселл и Роберт Паунд из Гарварда впервые наблюдали сигнал ЯМР на протонах. К тому времени уже было много известно о природе ядерного магнетизма, сам эффект ЯМР был теоретически предсказан, и было сделано несколько попыток его экспериментального наблюдения. Важно отметить, что годом раньше в Советском Союзе, в Казани, Евгением Завойским было открыто явление ЭПР. Сейчас уже хорошо известно, что Завойский также наблюдал и сигнал ЯМР, это было перед войной, в 1941 году. Однако в его распоряжении был магнит низкого качества с плохой однородностью поля, результаты были плохо воспроизводимыми и потому так и остались неопубликованными. Справедливости ради надо заметить, что Завойский был не единственным, кто наблюдал ЯМР до его «официального» открытия. В частности, американский физик Исидор Раби (лауреат Нобелевской премии 1944 года за исследование магнитных свойств ядер в атомных и молекулярных пучках) в конце 30-х годов также наблюдал ЯМР, но счел это аппаратурным артефактом. Так или иначе, но за нашей страной остается приоритет в экспериментальном обнаружении магнитного резонанса. Хотя сам Завойский вскоре после войны стал заниматься другими проблемами, его открытие для развития науки в Казани сыграло огромную роль. Казань до сих пор остается одним из ведущих мировых научных центров по ЭПР-спектроскопии.

    10. Нобелевские премии в области магнитного резонанса

      В первой половине XX века было присуждено несколько Нобелевских премий ученым, без работ которых открытие ЯМР не могло бы состояться. Среди них можно назвать Петера Зеемана, Отто Штерна, Исидора Раби, Вольфганга Паули. Но непосредственно связанных с ЯМР Нобелевских премий было четыре. В 1952 году премию получили Феликс Блох и Эдвард Парселл за открытие ЯМР. Это единственная «ЯМР-ная» Нобелевская премия по физике. В 1991 году премию по химии получил швейцарец Ричард Эрнст, работавший в знаменитой Швейцарской высшей технической школе в Цюрихе. Он был удостоен ее за развитие методов многомерной ЯМР-спектроскопии, которые позволили кардинально увеличить информативность ЯМР-экспериментов. В 2002 году лауреатом премии, также по химии, стал Курт Вютрих, работавший с Эрнстом в соседних зданиях в той же Технической школе. Он получил премию за разработку методов определения трехмерной структуры белков в растворе. До этого единственным методом, позволяющим определять пространственную конформацию больших биомакромолекул, был только рентгеноструктурный анализ. Наконец, в 2003 году премию по медицине за изобретение ЯМР-томографии получили американец Поль Лаутербур и англичанин Петер Мансфилд. Советский первооткрыватель ЭПР Е. К. Завойский Нобелевской премии, увы, не получил.

    МАГНИТНЫЙ РЕЗОНАНС
    резонансное (избирательное) поглощение радиочастотного излучения некоторыми атомными частицами, помещенными в постоянное магнитное поле. Большинство элементарных частиц, подобно волчкам, вращаются вокруг собственной оси. Если частица обладает электрическим зарядом, то при ее вращении возникает магнитное поле, т.е. она ведет себя подобно крошечному магниту. При взаимодействии этого магнитика с внешним магнитным полем происходят явления, позволяющие получить информацию о ядрах, атомах или молекулах, в состав которых входит данная элементарная частица. Метод магнитного резонанса представляет собой универсальный инструмент исследований, применяемый в столь различных областях науки, как биология, химия, геология и физика. Различают магнитные резонансы двух основных видов: электронный парамагнитный резонанс и ядерный магнитный резонанс.
    См. также
    МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА ;
    ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ .
    Электронный парамагнитный резонанс (ЭПР). ЭПР был открыт в 1944 русским физиком Е.К.Завойским. Электроны в веществах ведут себя как микроскопические магниты. В разных веществах они переориентируются по-разному, если поместить вещество в постоянное внешнее магнитное поле и воздействовать на него радиочастотным полем. Возврат электронов к исходной ориентации сопровождается радиочастотным сигналом, который несет информацию о свойствах электронов и их окружении. Такой метод, представляющий собой один из видов спектроскопии, применяется при исследовании кристаллической структуры элементов, химии живых клеток, химических связей в веществах и т.д.
    См. также СПЕКТР ; СПЕКТРОСКОПИЯ .
    Ядерный магнитный резонанс (ЯМР). ЯМР был открыт в 1946 американскими физиками Э. Перселлом и Ф. Блохом. Работая независимо друг от друга, они нашли способ резонансной "настройки" в магнитных полях собственных вращений ядер некоторых атомов, например водорода и одного из изотопов углерода. Когда образец, содержащий такие ядра, помещают в сильное магнитное поле, их ядерные моменты "выстраиваются" подобно железным опилкам вблизи постоянного магнита. Эту общую ориентацию можно нарушить радиочастотным сигналом. По выключении сигнала ядерные моменты возвращаются в исходное состояние, причем быстрота такого восстановления зависит от их энергетического состояния, типа окружающих ядер и ряда других факторов. Переход сопровождается испусканием радиочастотного сигнала. Сигнал подается на компьютер, который обрабатывает его. Таким путем (метод компьютерной ЯМР-томографии) можно получить изображения. (При изменении внешнего магнитного поля малыми ступенями достигается эффект трехмерного изображения.) Метод ЯМР обеспечивает высокую контрастность разных мягких тканей на изображении, что крайне важно для выявления больных клеток на фоне здоровых. ЯМР-томография считается более безопасной, нежели рентгеновская, поскольку не вызывает ни разрушения, ни раздражения тканей
    (см. также РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ). ЯМР позволяет также изучать живые клетки, не нарушая их жизнедеятельности. Поэтому следует ожидать, что применение ЯМР в клинической медицине будет расширяться. См. также ХИРУРГИЯ.

    Энциклопедия Кольера. - Открытое общество . 2000 .

    Смотреть что такое "МАГНИТНЫЙ РЕЗОНАНС" в других словарях:

      Избират. поглощение веществом эл. магн. волн определённой частоты w, обусловленное изменением ориентации магн. моментов частиц вещества (электронов, ат. ядер). Энергетич. уровни частицы, обладающей магн. моментом m, во внеш. магн. поле H… … Физическая энциклопедия

      Избират. поглощение в вом эл. магн. волн определ. частоты w, обусловленное изменением ориентации магн. моментов ч ц в ва (эл нов, ат. ядер). Энергетич. уровни ч цы, обладающей магн. моментом m, во внеш. магн. поле Н расщепляются на магн.… … Физическая энциклопедия

      магнитный резонанс - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN magnetic resonance … Справочник технического переводчика

      Избирательное поглощение веществом электромагнитных волн определённой длины волны, обусловленное изменением ориентации магнитных моментов электронов или атомных ядер. Энергетические уровни частицы, обладающей магнитным моментом (См.… … Большая советская энциклопедия

      Избират. поглощение эл. магн. излучения определённой частоты со в вом, находящимся во внеш. магн. поле. Обусловлен переходами между магн. подуровнями одного уровня энергии атома, ядра и др. квантовых систем. Наиб. важные примеры таких резонансов… … Естествознание. Энциклопедический словарь

      магнитный резонанс - избирательное поглощение веществом электромагнитных волн определенной частоты, обусловленное изменением ориентации магнитных моментов частиц вещества; Смотри также: Резонанс ядерный магнитный резонанс (ЯМР) … Энциклопедический словарь по металлургии

      магнитный резонанс - magnetinis rezonansas statusas T sritis chemija apibrėžtis Tam tikro dažnio elektromagnetinių bangų atrankioji sugertis medžiagoje. atitikmenys: angl. magnetic resonance rus. магнитный резонанс … Chemijos terminų aiškinamasis žodynas

      - (ЯМР), избирательное поглощение эл. магн. энергии в вом, обусловленное ядерным парамагнетизмом. ЯМР один из методов радиоспектроскопии, наблюдается, когда на исследуемый образец действуют взаимно перпендикулярные магн. поля: сильное постоянное Н0 … Физическая энциклопедия

      Изображение мозга человека на медицинском ЯМР томографе Ядерный магнитный резонанс (ЯМР) резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν… … Википедия

      - (АЯМР), избирательное поглощение энергии акустич. колебаний (фононов), обусловленное переориентацией магн. моментов ат. ядер в тв. теле, помещённом в постоянное магн. поле. Для большинства ядер резонансное поглощение наблюдается в области УЗ… … Физическая энциклопедия

    Книги

    • Магнитный резонанс в химии и медицине , Р. Фримэн , Монография известного ученого в области ЯМР-спектроскопии Р. Фримэна сочетает в себе наглядность рассмотрения основных принципов магнитного резонанса в химии и медицине (биологии) с высоким… Категория: Физика Издатель: КРАСАНД , Производитель: КРАСАНД ,
    • Ядерный магнитный резонанс в неорганической и координационной химии , М. А. Федотов , Монография знакомит с возможностями метода ядерного магнитного резонанса (ЯМР) в изучении неорганических веществ. Рассмотрены особенности явления ЯМР в жидкой фазе и техники измерения… Категория:

    1.1. Из истории спектроскопии магнитного резонанса.

    До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 10 3 - 10 6 МГц; микрорадиоволны) и высоких частот (примерно 10 -2 - 10 2 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии.
    Разность энергий уровней и энергия квантов, участвующих в этих процессах, составляют около 10 -7 эВ для области радиочастот и около 10 -4 эВ для сверхвысоких частот.
    Существование ядерных моментов впервые было обнаружено при изучении сверхтонкой структуры электронных спектров некоторых атомов с помощью оптических спектрометров с высокой разрешающей способностью.

    Сверхтонкая структура атомных спектров навела Паули в 1924 г. на мысль о том, что некоторые ядра обладают моментом количества движения (угловым моментом), а, следовательно, и магнитным моментом, взаимодействующим с атомными орбитальными электронами. Впоследствии эта гипотеза была подтверждена спектроскопическими измерениями, которые позволили определить значения угловых и магнитных моментов для многих ядер.
    Под влиянием внешнего магнитного поля магнитные моменты ядер ориентируются определенным образом, и появляется возможность наблюдать переходы между ядерными энергетическими уровнями, связанными с этими разными ориентациями: переходы, происходящие под действием излучения определенной частоты. Квантование энергетических уровней ядра является прямым следствием квантовой природы углового момента ядра, принимающего 2I + 1 значений. Спиновое квантовое число (спин) I может принимать любое значение, кратное 1/2; наиболее высоким из известных значений I (≥7) обладает 176 71 Lu. Измеримое наибольшее значение углового момента (наибольшее значение проекции момента на выделенное направление) равно Iħ, где ħ=h/2π, а h - постоянная Планка.
    Значения I для конкретных ядер предсказать нельзя, однако было замечено, что изотопы, у которых и массовое число, и атомный номер четные, имеют I = 0, а изотопы с нечетными массовыми числами имеют полуцелые значения спина. Такое положение, когда числа протонов и нейтронов в ядре четные и равны (I = 0), можно рассматривать как состояние с "полным спариванием", аналогичным полному спариванию электронов в диамагнитной молекуле.

    В 1921г. Штерн и Герлах методом атомного пучка показали, что измеримые значения магнитного момента атома дискретны соответственно пространственному квантованию атома в неоднородном магнитном поле. В последующих экспериментах, пропуская через постоянное магнитное поле пучок молекул водорода, удалось измерить небольшой по величине магнитный момент ядра водорода. Дальнейшее развитие метода состояло в том, что на пучок воздействовали дополнительным магнитным полем, осциллирующим с частотой, при которой индуцируются переходы между ядерными энергетическими уровнями, соответствующими квантовым значениям ядерного магнитного момента.

    Если ядерное спиновое число равно I, то ядро имеет (2I+1) равноотстоящих энергетических уровней; в постоянном магнитном поле с напряженностью H расстояние между наивысшим и наинизшим из этих уровней равно 2mH, где m- максимальное измеримое значение магнитного момента ядра. Отсюда расстояние между соседними уровнями равно mH/I, а частота осциллирующего магнитного поля, которое может вызвать переходы между этими уровнями, равна mH/Ih.

    В эксперименте с молекулярным пучком до детектора доходят те молекулы, энергия которых не меняется. Частота, при которой происходят резонансные переходы между уровнями, определяется путем последовательного изменения (развертки) частоты в некотором диапазоне. На определенной частоте происходит внезапное уменьшение числа молекул, достигающих детектора.

    Первые успешные наблюдения ЯМР такого рода были выполнены с основными магнитными полями порядка нескольких кило эрстед, что соответствует частотам осциллирующего магнитного поля в диапазоне 10 5 -10 8 Гц. Резонансный обмен энергией может происходить не только в молекулярных пучках; его можно наблюдать во всех агрегатных состояниях вещества.

    В 1936г. Горнер пытался обнаружить резонанс ядер Li 7 во фтористом литии и ядер H 1 в алюмокалиевых квасцах. Другая безуспешная попытка была предпринята гортнером и Бруром в 1942г. Регистрацию поглощения высокочастотной энергии при резонансе в этих экспериментах предполагалось производить соответственно калориметрическим методом и по аномальной дисперсии. Основной причиной неудач этих опытов был выбор неподходящих объектов. Лишь в конце 1945 года двумя группами американских физиков под руководством Ф. Блоха и Э.М. Пурселла впервые были получены сигналы ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса на протонах в парафине. За это открытие они в 1952 году были удостоены Нобелевской премии.

    1.2.Технологичекие приложения ЯМР (основные достоинства метода ЯМР).

    Метод ЯМР, хотя он и называется методом ядерного магнитного резонанса, не имеет никакого отношения к ядерной физике, которая, как известно, изучает процессы превращения ядер, т.е. радиоактивные процессы. При этом магнитная энергия (а явление ЯМР имеет место при помещении исследуемого образца в постоянное магнитное поле) не влияет на термодинамические свойства вещества, т.к. она во много раз (а точнее - на несколько порядков) меньше тепловой энергии, характерной для происходящих в обычных условиях процессов, в том числе и биологических.

    Основные достоинства метода ЯМР.

    - Высокая разрешающая способность – на десять порядков больше, чем у оптической спектроскопии.

    Возможность вести количественный учет (подсчет) резонирующих ядер. Это открывает возможности для количественного анализа вещества.

    Спектры ЯМР зависят от характера процессов, протекающих в исследуемом веществе. Поэтому эти процессы можно изучать указанным методом. Причем доступной оказывается временная шкала в очень широких пределах – от многих часов до малых долей секунды.

    Современная радиоэлектронная аппаратура и ЭВМ позволяют получать параметры, характеризующие явление, в удобной для исследователей и потребителей метода ЯМР форме. Данное обстоятельство особенно важно, когда речь идет о практическом использовании экспериментальных данных.

    Главным преимуществом ЯМР по сравнении с другими видами спектроскопии является возможность преобразования и видоизменения ядерного спинового гамильтониана по воле экспериментатора практически без каких-либо ограничений и подгонки его под специальные требования решаемой задачи. Из-за большой сложности картины не полностью разрешенных линий многие инфракрасные и ультрафиолетовые спектры невозможно расшифровать. Однако в ЯМР преобразование гамильтониана таким образом, чтобы можно было подробно проанализировать спектр, во многих случаях позволяет упростить сложные спектры.

    То, с какой легкостью удается преобразовать ядерный спиновый гамильтониан, обусловлено определенными причинами. Благодаря тому, что ядерные взаимодействия являются слабыми, можно ввести сильные возмущения, достаточные для того, чтобы подавить нежелательные взаимодействия. В оптической спектроскопии соответствующие взаимодействия обладают значительно большей энергией и подобные преобразования фактически невозможны.

    Модификация спинового гамильтониана играет существенную роль во многих приложениях одномерной ЯМР - спектроскопии. В настоящее время широкое распространение получило упрощение спектров или повышение их информативности с помощью спиновой развязки, когерентного усреднения многоимпульсными последовательностями, вращения образцов или частичной ориентации в жидкокристаллических растворителях.

    Говоря о достоинствах приборов ЯМР, необходимо исходить из реальных возможностей в приобретении и эксплуатации ЯМР-спектрометров. В этой связи необходимо отметить следующее.

    Операторские обязанности при работе на этих спектрометрах может выполнять любой человек. Но само обслуживание и ремонт требуют высокой квалификации.

    Проведение экспериментов по ЯМР сводится к следующему. Исследуемый образец помещают в постоянное магнитное поле, которое создается постоянным магнитом или, чаще всего, электромагнитом.

    При этом на образец подается радиочастотное излучение, обычно метрового диапазона. Резонанс детектируется соответствующими радиоэлектронными устройствами, обрабатывается ими и выдается в виде спектрограммы, которая может быть выедена на осциллограф или самописец, в виде ряда цифр и таблиц, получаемых с помощью печатающего устройства. Выходной резонансный сигнал может быть также введен в тот или иной технологический процесс для управления этим процессом или циклом.

    Обычно, если речь идет об исследовании в стационарных условиях моно мерных соединений на ядрах водорода с молекулярной массой несколько сотен единиц (а таких веществ при исследовании большинство), масса исследуемого образца должна быть от нескольких миллиграммов до ста миллиграммов. Образец обычно растворяют в том или ином растворителе, причем объем раствора 0.7¸1 мм 3 . При детектировании сигналов ЯМР от других (помимо Н 1) ядер масса образца может достигать двух граммов. Если исследуемое вещество – жидкость, то, естественно, готовить раствор в этом случае не обязательно – все зависит от целей эксперимента.