Перепускной клапан амортизатора. Автомобильные амортизаторы. Регулируемые амортизаторы с клапаном переменного сечения

Перепускной клапан амортизатора. Автомобильные амортизаторы. Регулируемые амортизаторы с клапаном переменного сечения
Перепускной клапан амортизатора. Автомобильные амортизаторы. Регулируемые амортизаторы с клапаном переменного сечения


Амортизаторы меняют сравнительно редко – два-три раза за срок службы автомобиля. Чаще - из-за неисправностей, иногда - желая улучшить поведение машины. Но как и какие выбрать взамен старых?

Общие сведения


Амортизатор - узел подвески автомобиля, уменьшающий колебания кузова и колес. Он превращает кинетическую энергию их вертикальных перемещений в тепловую и рассеивает ее в окружающую среду.

В подвесках современных автомобилей применяют телескопические амортизаторы, в основном - гидравлические двухтрубные и гидропневматические однотрубные. И те и другие гасят раскачку за счет гидравлического сопротивления. Оно возникает при перетекании амортизаторной жидкости 1 через специально подобранные отверстия постоянного (дроссели) и переменного (открывающиеся клапаны) сечения.

Телескопическая стойка (в обиходе - Мак-Ферсон) - агрегат подвески, соединенный верхней частью шарнирно с кузовом, а нижней - жестко с неподвижными деталями ступичного узла (поворотным кулаком или цапфой). Как правило, состоит из амортизаторной стойки, пружины и верхней опоры с подшипником. Воспринимает продольные, поперечные и вертикальные нагрузки, действующие между колесом и кузовом 2 .

Амортизаторная стойка - амортизатор увеличенных размеров, основной элемент телескопической стойки.

Патрон (вкладыш, картридж) (рис. 1) - телескопический амортизатор, устанавливаемый в корпус амортизаторной стойки или амортизатора, как правило, при их ремонте. Работать в подвеске “в чистом виде” не может.

Полный ход поршня (штока) - разность длины телескопического амортизатора в растянутом и сжатом положении.

Дроссельный и клапанный режимы - работа амортизатора, соответственно, с закрытыми и открытыми (открывающимися) клапанами.

На дроссельном режиме скорость поршня мала, и жидкость перетекает через постоянно открытые дроссели. С увеличением скорости гидравлическое сопротивление растет, открываются клапаны, и жидкость течет еще и через них - это клапанный режим 3 . Момент открытия клапанов задают при проектировании амортизатора в зависимости от требуемой его характеристики.

Характеристика амортизатора - зависимость сил его сопротивления 4 от скорости перемещения поршня. Как правило, она несимметрична - сопротивление при сжатии меньше, чем при растяжении. Это ограничивает нагрузку, передающуюся кузову при наезде колеса на неровность.

Характеристику записывают на специальных стендах при максимальных скоростях поршня до 1,0 м/с. Однако ее можно нарисовать самостоятельно. Для этого нужно знать хотя бы одно значение силы сопротивления при соответствующей скорости поршня на каждом режиме. Соединив три точки (центр координат и значения сил) плавной линией, получают приблизительную характеристику амортизатора. Это упрощает его выбор. Ведь у разных фирм скорость поршня, при которой определяют силы сопротивления, неодинакова, и без графика сопоставить их значения трудно (см. “Амортизаторы для российских легковых автомобилей”).

Влияние характеристики амортизатора на свойства автомобиля


Характеристика может быть (рис. 2) регрессивной, прогрессивной, линейной или комбинированной. Каждая придает разные свойства одному и тому же автомобилю. Но амортизаторы с однотипными характеристиками могут отличаться друг от друга величинами сил сопротивления, тоже влияющими на поведение машины. Поэтому специалисты сравнивают принципиальные (качественные, ярко выраженные) особенности характеристик разных типов.

Регрессивная наиболее распространена. С ней амортизатор хорошо гасит колебания и уменьшает интенсивность крена кузова при резких маневрах, но пропускает на него вибрации от разбитой дороги (от совокупностей мелких неровностей - выбоин, швов, гребенки, булыжника на трамвайных путях - высотой около 30 мм). Кроме того, если амортизатор рассчитан для магистрального автомобиля, переезд на нем единичных выступов (ступенек асфальта, образовавшихся при ремонте дороги) на высокой скорости может сопровождаться ощутимыми ударами.

Прогрессивную применяют реже. Ее основное преимущество - повышение виброзащиты кузова. Однако, проезжая череду плавных волн, машина может раскачаться вплоть до пробоев подвески. При энергичной смене полосы движения не исключены повышенные крены и диагональная раскачка автомобиля. А когда он полностью нагружен, у водителя часто возникает ощущение “слабых” амортизаторов. Если же их заменить усиленными, но с тем же типом характеристики, будут перегружены места крепления к кузову или подвеске.

Линейная по свойствам занимает промежуточное положение.

Комбинированная сочетает разные типы характеристик (например, прогрессивную и регрессивную). Кроме того, изготовители иногда делают их не “гладкими” - на отдельных участках кривую искажают, пытаясь влиять на нюансы поведения машины.

Какой амортизатор предпочесть?


Выбор амортизатора при покупке


Менять амортизаторы нужно парами. Некоторые фирмы даже продают их упакованными по две штуки. Допустимо ставить на автомобиль одновременно однотрубники и двухтрубники, но на одной оси они должны быть одинаковы.

Желательно, чтобы у каждого амортизатора был паспорт с техническими характеристиками и гарантийными обязательствами изготовителя. А у патрона - еще и инструкция по сборке: каким моментом затягивать гайку резервуара, заливать ли жидкость для теплоотвода и, если надо, то сколько и какой, и т.п.

Кроме того, иногда на амортизаторах есть защитные чехлы. Они могут быть транспортными, и при монтаже их надо снять. Об этом также должно быть сказано в инструкции.

К сожалению, многие изготовители поставляют в магазины амортизаторы без технической документации. Их параметры можно проверить в специализированных фирмах на исследовательском оборудовании, но только после покупки. Кстати, долговечность амортизатора специалисты определяют по уменьшению его сил сопротивления, считая предельно допустимым потерю не более 25% от номинала. Не зная исходных значений, выявить такую неисправность невозможно.

В любом случае у прилавка удастся только оценить качество изготовления амортизатора по косвенным признакам, придерживаясь указанной ниже последовательности действий.

Наружный осмотр

  • Маркировка 7 на амортизаторе должна соответствовать требованиям автозавода или каталогам изготовителя.
  • Потеки и капли жидкости, вмятины (особенно у однотрубных амортизаторов) на наружной поверхности резервуара, а также царапины, риски, повреждения или неоднородность покрытия штока 8 - недопустимы.
  • Резьба штыревого крепления амортизатора должна быть без повреждений. Для дополнительной проверки можно навернуть на него несамоконтрящуюся гайку.
Проверка геометрических размеров (линейкой и штангенциркулем)
  • Длина в сдвинутом состоянии.
  • Ход штока. Если нет информации о разрешенных автозаводом отклонениях от номинального значения, пределом можно считать ±5 мм.
  • Диаметр штока.
  • Положение чашки пружины (при наличии) на резервуаре относительно нижней проушины или скобы крепления.
Проверка работоспособности амортизатора

Подготовка

Двухтрубник нужно предварительно прокачать (3-5 раз сжать и растянуть на полный ход), поставив вертикально штоком вверх (отклонение от вертикали не более 30°), и потом не класть и не переворачивать.

Однотрубник можно проверять в любом положении без подготовки.

Проверка

Полностью сжать и растянуть амортизатор 3-5 раз, перед каждым циклом повернув шток в резервуаре примерно на 120° вокруг своей оси 9 .

  • Перемещения должны быть плавными, с заметным усилием, без заеданий на всей длине хода. Стуки, скрипы и прочие шумы недопустимы, за исключением “сопения” - его вызывает перетекание жидкости через клапанную систему.
  • Сопротивление амортизатора при сжатии, как правило, меньше, чем при отбое (примерно в три раза). В конце хода растяжения не должно быть уменьшения усилия (провала), а сжатия - увеличения (подпора). У прокаченного двухтрубника провал свидетельствует о нехватке жидкости, а подпор - об ее избытке. У однотрубника провал - признак поврежденного уплотнения плавающего поршня.
  • Жидкость не должна вытекать из амортизатора. Следы ее пленки на штоке допустимы (он будет жирный на ощупь), но без кольцевых наплывов на нем и у сальника, вновь возникающих после снятия их тканью8.
Особенности
  • Если двухтрубную амортизаторную стойку (или патрон) после прокачки полностью сжать в вертикальном положении и отпустить шток, он должен самопроизвольно выдвинуться, как правило, не менее чем на 30 мм. Его выталкивает давление воздуха, сжатого в резервуаре вытесненной из цилиндра жидкостью. Это свидетельствует о правильной сборке узла. Кроме того, если из полностью сжатого вертикального положения, взявшись за крепежную часть штока, приподнять стойку, она должна опускаться под собственным весом.
  • У однотрубника газовый подпор должен выдвигать шток полностью из любого положения.
  • В “перевернутых” однотрубных патронах вместо штока из корпуса под действием выталкивающей силы выдвинут рабочий цилиндр. Штатный буфер сжатия подвески на него поставить нельзя. Заменитель должен быть внутри, поэтому ход картриджа меньше (примерно на 50-80 мм), чем у аналогичного двухтрубника. Кроме того, в конце хода сжатия, после касания буфера, усилие будет плавно и увеличиваться.

1 Амортизаторная жидкость изготовлена на масляной основе, содержит комплекс присадок (антивспенивающих, антикоррозионных, понижающих зависимость вязкости от температуры и т.п.).
2 К стойкам не относят амортизаторы, даже с установленными пружинами, соединенные с подвеской и кузовом шарнирно и воспринимающие только вертикальные нагрузки.
3 ОСТ 37.001.084 «Амортизаторы телескопические гидравлические и гидропневматические автотранспортных средств. Методы стендовых испытаний» требует определять усилия сопротивления амортизаторов с закрытыми клапанами при максимальной скорости поршня 0,08-0,2 м/с, а с открывающимися – 0,25-0,52 м/с.
4 По ОСТу 37.001.440 «Амортизаторы гидравлические телескопические автотранспортных средств. Общие технические требования» отклонения сил сопротивления амортизаторов от средних значений не должны превышать: на дроссельном режиме – при отбое ±30%, при сжатии ±50%; на клапанном режиме – соответственно ±15% и ±20%.
5 По ОСТу 37.001.440 при повышении температуры от 20 до 80°С силы сопротивления амортизатора не должны уменьшаться более чем на 30% от первоначального значения как при отбое, так и при сжатии.
6 По ОСТу 37.001.434 «Амортизаторы гидравлические и гидропневматические телескопические автотранспортных средств. Типы, основные параметры и размеры» предельное отклонение от номинальной длины в сдвинутом состоянии должно быть ±3 мм.
7 По ОСТу 37.001.440 на каждом амортизаторе должна быть маркировка как минимум товарного знака завода-изготовителя, даты изготовления, обозначения (номера) амортизатора.
8 Штоки многих амортизаторов защищены жесткими кожухами или гофрированными резиновыми чехлами и не видны. Если нет возможности их отсоединить или снять (неразборная конструкция, возражения продавца), от осмотра штока придется отказаться.
9 Амортизатор с неотсоединенным гофрированным защитным чехлом проверять без повертывания штока.

Амортизаторы (Dampers)

Амортизаторы или гасители колебаний представляют собой наполненные маслом цилиндры призванные контролировать скорость хода подвески. В своей основе амортизатор состоит из пистона, штока и масляного цилиндра. Кинетическая энергия перемещения пистона гасится маслом, которое от этого нагревается. Следовательно, место установки амортизаторов должно охлаждаться, так как перегрев может снизить их эффективность.

Передние амортизаторы (синие) и буферы (белые) Задние амортизаторы

На левом рисунке показана компоновка подвески. Большая "дырка" в левом нижнем углу это ось шарнира связывающего штангу толкателя с пружинами и амортизаторами (через рокер, установленный на шарнире и нажимающий на штоки амортизатора и пружины). Обратите внимание, что штоки пружины и амортизатора расположены параллельно друг другу.
В общих чертах амортизатор работает следующим образом: пистон гонит масло через маленькие отверстия на стенках внутреннего цилиндра и через фасонные шайбы (диффузоры сверху и снизу пистона). При регулировке амортизаторов изменяют диаметр отверстий и таким образом регулируют сопротивление масла перемещению пистона. Регулировки "медленных" (slow) характеристик осуществляется фасонными шайбами, в то время как регулировки "быстрых" (fast) параметров производится за счёт внутренних отверстий цилиндра. Наряду с гидравлическим маслом (которое не сжимается) в амортизаторах используется инертный газ нитроген, позволяющий пистону перемещаться в небольшом диапазоне.
Амортизаторы контролируют скорость реакции пружин в процессе их работы. Например: при жёстком торможении происходит трансфер веса вперёд, передний конец машины приседает вниз и дорожный просвет спереди уменьшается. В то время как пружины диктуют силу этого крена, амортизаторы контролируют скорость, с которой он (крен) происходит . И конечно, то же самое происходит при любом переносе веса в процессе ускорения, торможения и под воздействием боковых нагрузок в повороте.
Амортизаторы болида Ф-1 имеют четыре настраиваемых параметра. Можно регулировать быстрый и медленный параметр "хода сжатия" (bump) (пружины сжимаются), а так же быстрый и медленный параметр "хода отбоя" (rebound) (пружины разжимаются). Понятия "быстрый" и "медленный" не имеют отношение к скорости машины, а скорее описывают скорость перемещения пистона под воздействием штока внутри цилиндра. Вот простой метод это понять и запомнить: медленные характеристики оказывают влияние на трансфер подрессоренных масс (продольный и поперечный крен т.н. pitch and roll); быстрые характеристики отвечают за перемещение неподрессоренных масс (подскок на кочках колеса и колесного узла) . Другими словами медленные параметры отвечают за баланс машины в повороте, быстрые обеспечивают способность подвески преодолевать неровности.
Регулировка амортизаторов является самой точной в настройке подвески. Настройка амортизаторов это последний штрих в сбалансированном сетапе. Я рекомендую прочитать как можно больше об этом вопросе, потому что суть амортизаторов критически важна в характеристиках гоночной машины.

Правильный подбор амортизаторов в настройке подвески автомобиля - процесс сложный и компромиссный. Близкая к спортивным характеристикам жесткая подвеска гарантирует минимальные крены и желаемый контакт с дорожным покрытием. И это хорошо.

Думая о настройке подвески, надо временно абстрагироваться от брендов и рекламных кампаний. Прежде всего надо решить, какой тип амортизаторов соответствует персональному концепту вашего драйва. Академические понятия функциональности амортизатора звучат весьма определенно - гасить вертикальные колебания. Кроме того, нельзя забывать и о влиянии амортизаторов на разгонную и тормозную динамику. Так, при разгоне автомобиль «приседает» назад, нагружая задние и разгружая передние колеса, снижая тем самым их сцепление с дорогой. При торможении наблюдается обратная картина. Основная нагрузка ложится на передние колеса, а задние лишь слегка притормаживают. И в той и в другой ситуации идеальным было бы состояние, при котором автомобиль сохранял бы свое нормальное «горизонтальное» положение. Примерно та же картина и при маневрировании, но здесь нагрузка смещается не по осям, а по сторонам автомобиля.
Резюмируя, можно сказать, что главной задачей амортизаторов является удержание колеса в постоянном контакте с дорогой во избежание потери контроля над автомобилем. Для чего колесо должно как можно мягче и четче обогнуть препятствие и так же четко и быстро вернуться на дорогу, обеспечивая необходимое сцепление. Современные тенденции сводятся к тому, что, к примеру, пружины или рессоры лишь поддерживают вес автомобиля. Всю остальную работу берут на себя именно амортизаторы, как более точный инструмент. Вот почему так важен их правильный выбор.
При работе амортизатора необходимо предусмотреть множество различных вариантов и характеристик его функционирования. Ведь дорога имеет куда более сложное покрытие, чем в теории, да и автомобиль едет не всегда по прямой. Нюансов очень много. К примеру, несколько последовательных кочек заставляют его работать прерывисто: не успев толком распрямиться, амортизатор снова должен работать на сжатие. Нужно обеспечить и комфортное обрабатывание мелких неровностей, а на крупных избежать полного сжатия амортизатора, грозящего его пробоем. Здесь, как нигде более, важен компромисс - оптимальный баланс между комфортностью и точной управляемостью.
Следующая большая проблема - теплообразование. И чем выше вязкость жидкости или меньше перепускные отверстия поршня, тем выше жесткость амортизатора и больше выделяется температуры при его работе. Отвод тепла - очень важная задача. Но и минусовая температура доставляет немало проблем. При большом минусе масло, находящееся внутри амортизатора, может загустеть, что сделает амортизатор более жестким. Характеристики могут меняться до нескольких десятков процентов. В данном случае все решает правильный подбор масла.

Далее вопрос - аэрация. Поскольку в современных амортизаторах наряду с маслом присутствует и некий газ, они могут смешиваться в процессе работы, и масло превращается в пену. А поскольку пена, в отличие от масла, может быть сжата, это резко снижает эффективность демпфирования.

Не менее важный вопрос - расположение амортизаторов. Наиболее выгодное, с точки зрения работы, место - как можно ближе к колесу, точно перпендикулярно плоскости подвески. Установка амортизатора под углом (как это часто бывает) снижает его демпфирующую эффективность (отклонение от перпендикуляра подвески +/- 50 О - эффективность амортизатора 68%). Все вышесказанное возводит амортизаторы с позиции банального (с точки зрения простого обывателя) автомобильного узла в сложнейшую и многогранную науку. И как в любой другой области, здесь также существуют различные конструкторские и компоновочные решения поставленных задач. По своей конструкции амортизаторы можно разделить на несколько основных типов. По архитектуре их принято делить на одно- и двухтрубные. По наполнению: жидкостные (гидравлические) и газовые (с гидравлическим газовым подпором). Существуют и чисто газовые амортизаторы, в которых используется очень высокое давление газа (порядка 60 атм), но они не столь распространены.

Принципиальная схема двухтрубного гидравлического амортизатора

Гидравлические двухтрубные амортизаторы - некогда самый распространенный и дешевый тип демпфирующих стоек. Они довольно просты по конструкции и не столь требовательны к качеству изготовления. Состоит такой амортизатор из двух трубок: рабочей колбы, где и находится поршень, и внешнего корпуса, предназначенного для хранения избыточного масла. Поршень перемещается во внутренней колбе, пропуская масло через собственные каналы и выдавливая часть масла через клапан, находящийся снизу колбы. Этот клапан иногда называют клапаном сжатия, поскольку зачастую он отвечает за перетекание масла именно в данном такте. Эта часть жидкости просачивается в полость между колбой и внешним корпусом, где сжимает воздух, находящийся при атмосферном давлении в верхней части амортизатора. При движении назад задействуются клапана самого поршня, регулируя усилие на отбой.

Читайте также

Длительное время именно такая конструкция превалировала на рынке амортизаторов. Но годы эксплуатации выявили ряд ее недостатков. Основным минусом является вышеупомянутая аэрация. Особенно при интенсивной работе такого амортизатора. Замена воздуха азотом (азот, будучи инертным газом, не давал деталям амортизатора корродировать, в отличие от воздуха) несколько улучшила его работу, но не решила проблему полностью. Кроме того, такие амортизаторы, имея фактически двойной корпус, хуже охлаждаются, что также отрицательно сказывается на их работе. С другой стороны, если делать их большего диаметра, удается повысить демпфирующие характеристики, одновременно снижая рабочее давление и, как следствие, температуру.

Гидравлика + газ

Такие гидропневматические амортизаторы имеют схожую конструкцию и принцип действия с обычными гидравлическими двухтрубными стойками. Основное отличие в том, что вместо воздуха под атмосферным давлением находится инертный газ (чаще азот) под некоторым давлением (от 4 до 20 атм и более, в зависимости от назначения). Это и есть так называемый газовый подпор. Значение давления газа может быть различным для разных условий эксплуатации автомобиля. Кстати, чем больше диаметр патрона, тем меньшее необходимо давление газового подпора. Оно может различаться также для передних и задних амортизаторов.

Чем же помогает газовый подпор? Прежде всего - пресловутая аэрация. Будучи под давлением, газ не смешивается с маслом столь сильно, как в предыдущем случае, улучшая работу амортизатора. Но полностью данная проблема не решена и здесь. Кроме снижения аэрации масла, газовый подпор способствует поддержанию автомобиля, выполняя роль дополнительного демпфера. То есть, даже если пружины уже сжались бы, газовый заряд в амортизаторе удерживает правильное положение автомобиля, что положительно влияет на его управляемость. Такой конструктивный подход позволяет инженерам более гибко подходить к настройкам работы амортизатора, делая его более универсальным, чем обычные гидравлические.

Общая проблема всех двухтрубных амортизаторов - невозможность установки «вверх ногами». Этому мешает наполняющий их газ.

Одна труба

Такие амортизаторы, как следует из названия, имеют лишь одну колбу, которая является и рабочим цилиндром, и корпусом одновременно. Работают они так же, как и двухтрубные, но в данной конструкции газ находится в том же цилиндре и отделен от масла особым плавающим поршнем (так называемая схема De Carbon). Газ (чаще азот) находится в своей камере, отделенной от масла, под высоким давлением (20-30 атм).

Однотрубные амортизаторы не имеют нижнего клапана сжатия, как двухтрубные. Это означает, что всю работу по управлению сопротивлением и при сжатии, и при отбое берет на себя поршень. В этой связи, несмотря на кажущуюся простоту этого узла, подбор его конструкции, размера, формы и количества отверстий является весьма сложной задачей. В целом такие амортизаторы имеют высокие рабочие характеристики. Они еще точнее держат автомобиль, способствуя лучшей управляемости. Кроме того, они эффективнее охлаждаются, поскольку воздухом обдувается непосредственно рабочий цилиндр. Плюс к этому в тех же габаритах, что и двухтрубные амортизаторы, внутренний диаметр рабочей колбы будет больше, равно как и диаметр поршня. Это означает больший объем масла, более стабильные характеристики и, опять же, лучшая теплоотдача.

Но есть и минусы. В отличие от своих двухтрубных «коллег», однотрубные более уязвимы от внешних повреждений. Замятая колба однозначно приводит к замене стойки, тогда как двухтрубные имеют своего рода страховку, или, если можно так назвать, щит в виде внешнего цилиндра. К минусам можно отнести также высокую чувствительность однотрубных амортизаторов к температуре. Чем она выше, тем выше давление газового подпора и жестче работает амортизатор. С другой стороны, однотрубные стойки можно устанавливать как угодно, поскольку газ плотно отделен от масла плавающим поршнем. Кстати, именно это обстоятельство позволяет автопроизводителям, устанавливая такой амортизатор штоком вниз, снижать неподрессоренные массы.

Здесь же нужно сказать и о том, что часто можно встретить амортизаторы с надетой на них пружиной. Этот вариант конструкции не относится исключительно к однотрубным стойкам. Просто так добавляется дополнительный упругий элемент, а порой он и вовсе заменяет основную пружину. Такие конструкции часто имеют возможность регулировки клиренса автомобиля. Подкручивая особую винтовую гайку на корпусе амортизатора, поддерживающую пружину снизу, можно поднять или опустить автомобиль, соответственно поджав либо отпустив пружину.


Своего рода эволюциейоднотрубных амортизаторов являются «однотрубники» с выносной компенсационной камерой. В них камера с газовым подпором вынесена за пределы самого амортизатора в отдельный резервуар. Такая конструкция позволяет, не увеличивая размеры самого амортизатора, увеличить объем и газа, и масла, что серьезно влияет на температурный баланс (они более эффективно охлаждаются) и стабильность характеристик. Плюс к этому имеют больший рабочий ход. Но еще больший эффект от выносной камеры в том, что на пути масла, перетекающего из основного рабочего цилиндра в доп. камеру, можно установить систему клапанов, которые будут играть роль клапана сжатия, как в двухтрубной конструкции. Отделив друг от друга клапана, работающие на сжатие и отбой, можно заложить много диапазонов регулировки. Можно менять жесткость работы амортизатора для различных скоростей движения поршня, например малую, среднюю и большую. И позиций таких регулировок может быть 10 и более. Порой можно встретить и весьма экстравагантную систему с набором перепускных клапанов. Кроме большого внешнего резервуара, амортизатор облеплен несколькими трубками, на концах которых находятся регулировочные головки под гаечный ключ или отвертку. По этим трубкам масло перепускается из над- и подпоршневых камер друг в друга. Регулируя эти перепускные каналы, можно получить нужные характеристики работы амортизатора на определенных режимах или, если быть точным, положениях поршня. То есть такие амортизаторы чувствительны не только к скорости перемещения поршня, но и к его позиции внутри колбы. Кроме этого, наличие большего числа трубок, по которым проходит масло, способствует лучшему его охлаждению.

Назначение, устройство и характеристика амортизаторов
Амортизатор служит для гашения колебаний кузова автомобиля и колёс автомобиля. Гашение колебаний происходит при перетекании жидкости из одной полости амортизатора в другую. Перетекание происходит через калиброванные отверстия, жидкость при перетекании создаёт сопротивление, которое зависит от вязкости жидкости. Механическая энергия переходит в тепловую. При работе амортизатора скорость перетекания жидкости достигает 20…30 м/с и он может нагреваться до 160 С и выше.
Основные требования к конструкциям амортизаторов:
- обеспечение заданных параметров плавности хода и эффективности гашения колебаний;
- уменьшение тряски на малых неровностях;
- разгрузка от динамических воздействий при резком перемещении колеса;
- надёжность в работе, в частности стабильность действия при различных режимах движения и длительное сохранение характеристик;

Заданные параметры плавности хода обеспечиваются правильным выбором коэффициента апериодичности (затухания колебаний), поскольку при этом создаётся рациональная зависимость между жёсткостью подвески (частотой собственных колебаний) и сопротивлением амортизаторов.

Конструкция амортизатора .Амортизаторы могут быть двухтрубными и однотрубными. Двухтрубные амортизаторы имеют рабочий цилиндр и резервуар, в который перетекает жидкость, в однотрубных амортизаторах есть только рабочий цилиндр. Так как в надпоршневом пространстве объём меньше (на объём штока, то жидкость перетекает в резервуар и гидроудар не происходит).

Внутри однотрубного амортизатора располагается дополнительный поршень, под которым находится закачанный газ. В амортизаторах низкого давления внутреннее давление газа составляет около 0,1 МПа; амортизаторах высокого давления – 1,0 МПа и выше. Эти амортизаторы называются газонаполненными, что не совсем правильно – оба амортизатора наполнены газом. В отличие от жидкости, газ может сжиматься и газ выполняет роль резервуара. Так как конструкция проще и корпус имеет одну стенку, то перенос тепла в окружающую среду идёт интенсивнее, чем в двухтрубном амортизаторе.
Все амортизаторы работают на сжатие и на растяжение. Характеристика амортизатора зависит от настройки клапанов.

На отечественные доноры устанавливаются амортизаторы всех типов. Подробное описании конструкции амортизаторов на примерах:
Передний амортизатор автомобиля ВАЗ-2101. Амортизатор двухтрубный, низкого давления, двухстороннего действия.

Амортизатор состоит из трёх основных узлов – цилиндра 12 с днищем 2 , поршня 10 со штоком 13 и направляющей втулки 21 с уплотнителями 17 , 20 и манжетой 18 . В поршне амортизатора имеются два ряда сквозных отверстий, расположенных по окружности и установлено поршневое кольцо 27 . Отверстия наружного ряда сверху закрыты клапаном отдачи 29 с дисками 28 , 28 , гайкой 8 , шайбой 26 и сильной пружиной 9 . В днище цилиндра амортизатора расположен клапан сжатия с дисками 3 , 4 и пружиной 5 , обойма 6 и тарелка 7 которого имеют ряд сквозных отверстий. Цилиндр 12 заполнен амортизаторной жидкостью, вытеканию которой препятствует манжета 18 с обоймой 19 , поджимаемая гайкой 15, которая ввёрнута в резервуар 11 с проушиной 1 . Полость амортизатора. Заключённая между цилиндром 12 и резервуаром 11 , служит для компенсации изменения объёма жидкости в цилиндре по обе стороны поршня. Объём жидкости изменяется из-за перемещения штока 13 амортизатора, защищённого кожухом 14 .
При ходе колеса вверх поршень 10 движется вниз, шток 13 входит в цилиндр 12 , а защитное кольцо 16 снимает грязь со штока. Давление, оказываемое поршнем на жидкость, вытесняет её по двум направлениям – в пространство над поршнем в компенсационную камеру 30 . Пройдя через наружный ряд отверстий в поршне, жидкость открывает перепускной клапан 24 и поступает из-под поршня в пространство над ним. Часть жидкости, объём которой равен объёму вводимого в цилиндр штока, поступает через клапан сжатия в компенсационную камеру, повышая при этом давление находящегося в камере воздуха. При плавном сжатии жидкость в компенсационную камеру перетекает через специальный проход в диске 4 клапана сжатия. При резком сжатии поршень перемещается быстро и давление жидкости в цилиндре значительно возрастает. Под действием высокого давления прогибается внутренний край дисков 3 и 4 , и поток жидкости проходит через кольцевую щель между тарелкой 7 и диском 4 клапана сжатия. В результате дальнейшее увеличение сопротивления амортизатора резко замедляется. Клапан сжатия разгружает амортизатор и подвеску от больших усилий, которые могут возникнуть при высокочастотных колебаниях и ударах во время движения по плохой дороге. Кроме того, он исключает возрастание сопротивления амортизатора при повышении вязкости амортизаторной жидкости в холодное время.
При ходе отдачи, поршень перемещается вверх и шток выходит из цилиндра амортизатора. Перепускной клапан 24 закрывается, и давление жидкости над поршнем увеличивается. Жидкость через внутренний ряд отверстий в поршне и клапан отдачи 29 поступает в пространство под поршнем. Одновременно под действием давления воздуха часть жидкости из компенсационной камеры также поступает в цилиндр амортизатора. При плавной отдаче клапан 29 закрыт, и жидкость проходит через пазы его дроссельного диска 25 . При резкой отдаче скорость движения поршня увеличивается, под действием возросшего давления открывается клапан 29 , и жидкость проходит через него. Клапан отдачи разгружает амортизатор и подвеску от больших нагрузок, возникающих при высокоскоростных колебаниях при движении автомобиля по неровной дороге. Клапан также ограничивает увеличение сопротивления амортизатора в случае возрастания вязкости жидкости при низких температурах. Сопротивление, создаваемое амортизатором при ходе сжатия, в четыре раза меньше, чем при ходе отдачи. Это необходимо для того, чтобы толчки и удары от дорожных неровностей в минимальной степени передавались на кузов автомобиля.
Передний амортизатор автомобиля ВАЗ-2108. Телескопическая стойка передней подвески одновременно выполняет функции переднего амортизатора.

Корпус 23 телескопической стойки является резервуаром, в котором размещены все детали гидравлического амортизатора. Внутри корпуса стойки находится цилиндр 25 , в нижней части которого расположен клапан сжатия, состоящий из корпуса 1 , дисков 2 и 3 , тарелки 4 , пружины 32 и обоймы 31 . В цилиндре находится поршень 27 со штоком 22 и двумя клапанами: перепускным и отдачи. Поршень выполнен из спечённых материалов, имеет два ряда сквозных отверстий (наружный и внутренний), расположенных по окружности. Наружный ряд отверстий закрыт сверху перепускным клапаном, состоящим из тарелки 26 и пружины 8 . Внутренний ряд отверстий закрыт снизу клапаном отдачи, включающим в себя пружину 5 , тарелку 6 , диски 28 и 29 , гайку 30 . Поршень уплотняется в цилиндре пластмассовым кольцом 7 , повышающим износостойкость цилиндра и поршня. В верхней части цилиндра расположена направляющая втулка 14 штока 22 с уплотнителями 15 , 20 и манжетой 16 . Во втулке установлена трубка 13 , по которой сливается в компенсационную камеру 24 амортизаторная жидкость, прошедшая через зазор между направляющей втулкой и штоком. На штоке 22 внутри цилиндра размещён гидравлический буфер отдачи и приварена специальная втулка 9 . Буфер состоит из плунжера 11 и пружины 12 , которая поджимает плунжер к выступу 10 цилиндра.
Гидравлический буфет ограничивает перемещение штока при ходе отдачи. В цилиндре 25 находится амортизаторная жидкость, вытеканию которой препятствуют манжета 16 с обоймой 21 , поджимаемая гайкой 15 , которая ввёрнута в корпус телескопической стойки. Защитное кольцо 19 очищает шток поршня от грязи при его движении внутрь цилиндра. В верхней части корпуса стойки размещена опора 17 , в которую упирается буфер сжатия, ограничивающий ход колеса вверх. При ходе сжатия жидкость из-под поршня проходит в пространство над ним через перепускной клапан, а в компенсационную камеру 24 через клапан сжатия. При плавном сжатии жидкость перетекает в компенсационную камеру только через вырезы в диске 3 клапана сжатия, который находится в закрытом состоянии. При резком сжатии жидкость отжимает внутренние края дисков 2 и 3 проходит через кольцевую щель между тарелкой 4 и диском 3 открытого клапана сжатия.
При ходе отдачи жидкость поступает под поршень из пространства над ним через клапан отдачи, а из компенсационной камеры – через клапан сжатия. При плавной отдаче жидкость проходит через пазы дроссельного диска 28 клапана отдачи, находящегося в закрытом состоянии. При резкой отдаче клапан отдачи открывается и жидкость проходит через него.
Ограничение хода отдачи осуществляется гидравлическим буфером отдачи. При ходе отдачи, когда втулка 9 штока ещё не упирается в плунжер 11 буфера отдачи, полости над плунжером и под ним свободно сообщаются через зазор между плунжером и штоком 22 , не создавая дополнительного сопротивления движению поршня 27 . При упоре втулки 9 штока в торец плунжера 11 перекрывается зазор между плунжером и штоком, и плунжер вместе со штоком перемещается вверх. В этом случае жидкость из пространства над плунжером проходит в пространство под ним через калиброванный зазор между плунжером 11 и цилиндром 25 , испытывая сопротивление. Причём сопротивление истечению жидкости через калиброванный зазор изменяется постепенно и возрастает с увеличением хода отдачи за счёт увеличения длины калиброванного зазора. Постепенное нарастание сопротивления обеспечивает плавное ограничение хода отдачи, что исключает передачу значительных нагрузок на подвеску и кузов и повышает плавность хода автомобиля.

Конструкция и схема работы заднего однотрубного амортизатора ВАЗ-2108.

Слева – конструкция амортизатора. В центре – схема работа при сжатии. Справа – схема работа при отбое. P1 – низкое давление жидкости; Р2 – высокое давление жидкости; З3 – давление воздуха

Газонаполненный амортизатор – однотрубный, высокого давления. Амортизатор состоит из рабочего цилиндра 7 , поршня 4 со штоком 1 и узла уплотнения 2 высокого давления. На поршне размещены два клапана – сжатия 3 и отдачи 5 .

Внутри цилиндра амортизатора находятся рабочая полость 9 , заполненная амортизаторной жидкостью и компенсационная камера 8 , заполненная газом. Камера компенсирует изменение объёма рабочей жидкости в рабочей полости при её нагреве и охлаждении, при входе штока поршня в цилиндр и выходе из него за счёт изменения объёма сжатого газа в камере. Газ и жидкость разделены плавающим поршнем 6 , который ограничивает рабочую полость 9 .
В процессе работы амортизатора жидкость перетекает через каналы переменного сечения, выполненные в поршне 4 и клапаны сжатия 3 и отдачи 5 . При ходе отдачи поршень 4 перемещается вниз, и жидкость из-под поршня перетекает в полость над поршнем через клапан отдачи 5 , испытывая при этом сопротивление. Давление сжатого газа перемещает разделительный поршень 6 вниз, компенсируя изменение объёма жидкости вследствие выхода штока 1 из цилиндра амортизатора.
При ходе сжатия поршень 4 перемещается вверх, и жидкость из надпоршневого пространства перетекает в полость под поршнем через клапан сжатия 3 , также испытывая сопротивление. Давление жидкости перемещает вверх разделительный поршень, который сжимает газ в компенсационной камере 8 и компенсирует изменение объёма жидкости в рабочей полости амортизатора из-за входа штока внутрь цилиндра.

Амортизаторы Ohlins от квадроциклов, левый – передний, правый – задний.


Амотризаторы с большим ходом:
Верхний амортизатор – гидравлический с компенсационным резервуаром, нижний амортизатор – воздушный.

При правильной настройке пружин и клапанов, система амортизатор-пружина обеспечивает постоянный контакт колеса с дорогой без отрыва.

Просмотров статьи - 24 142 views

Предупреждение:

Все ссылки и картинки, размещенные выше, представлены исключительно для ознакомления и расположены не на нашем сервере. На нашем сервере могут быть расположены только те картинки, авторами которых является Администрация портала сайт и IZIKASTOM.INFO . Все остальные файлы лежат на сторонних серверах, к которым сайт сайт не имеет абсолютно никакого отношения. Сайт является техническим порталом информационного характера, на котором пользователи выкладывают ссылки на эти файлы, которые доступны публично. Если вы не согласны с правилами сайта, просьба покинуть сайт. Для комментирования или обсуждения статей воспользуйтесь

Возможно, не все знают, что устройство амортизатора предназначено не только для обеспечения плавности хода автомобиля и, тем самым, повышения его комфортности во время езды. Его основной задачей является обеспечение надёжного сцепления колес машины с дорожным покрытием во время движения. К сожалению, наши дороги не отличаются идеальной ровностью. Колёса и подвеска машины испытывают постоянные удары и толчки от ухабов, ям, камней. Это приводит к раскачиванию кузова и его тряске, вибрации. Колёса от этого теряют сцепление с дорогой, что приводит к снижению управляемости и безопасности движения. Амортизаторы как раз предназначены для уменьшения этого эффекта.

Чтобы избавиться от колебательного процесса, который возник в результате наезда колеса на неровность дороги, необходимо погасить энергию этих колебаний и чем-то её компенсировать. Современные амортизаторы решают это вопрос очень просто. Энергия колебаний уходит на прокачку рабочего вещества из одного замкнутого объёма в другой. Чаще всего таким рабочим веществом является специальное амортизаторное масло. Но существуют и газовые конструкции, а также их комбинации.

Устройств

Разные виды амортизаторов отличаются между собой видом рабочего вещества, способом его прокачки из одного объёма в другой, а также количеством и формой этих объёмов. В целом, их можно разделить на три больших класса – гидравлические, газовые и комбинированные.

Двухтрубный

Самым простым и доступным является двухтрубный, представляющий собой два цилиндра, один из которых помещен внутрь другого. Рабочим веществом является амортизаторное масло, которое с помощью поршня, помещенного во внутренний цилиндр, прокачивается через специальные отверстия из одного цилиндра в другой. Эти отверстия находятся как во внутреннем цилиндре, так и в поршне. Таким образом, мы имеет два рабочих объёма, в которые проходит попеременная перекачка масла в зависимости от хода поршня (вверх или вниз). В процессе этой перекачки энергия колебаний переходит в тепло. Поршень закреплён на штоке амортизатора и рабочее положение для амортизаторов такого вида – вертикальное.

Плюсами этого вида является его простота, ценовая доступность, ремонтопригодность. К минусам можно отнести такие недостатки, как перегрев и возможность вспенивания рабочего вещества при интенсивной работе на очень неровной дороге при движении на высокой скорости.

Однотрубный

В однотрубной конструкции обычно используется газ под высоким давлением до 30 атмосфер. Газ отделён от амортизаторного масла и поршня другим плавающим поршнем. Отверстия для прокачки масла находятся только в рабочем поршне. Как следствие, в такой конструкции снижаются габариты и вес. Он лучше охлаждается, благодаря отсутствию наружной рубашки, как у двухтрубных. Обладает хорошими эксплуатационными качествами, лучше «держит» дорогу. Для них тип установки не имеет значения. Они могут устанавливаться штоком вниз.

В то же время, любое внешнее повреждение цилиндра может привести к заклиниванию поршня и выходу амортизатора из строя. Также они чувствительны к температуре внешней среды. Высокая температура приводит к повышению давления газа и, как следствие, увеличивается жесткость. Низкая температура, наоборот, способствует увеличению мягкости хода.

Газомасляный

Газомасляный комбинированный вид в настоящее время находит все большее применение, сочетая в себе повышенную работоспособность и высокие характеристики однотрубной конструкции с простотой и надёжностью двухтрубной.
По своей сути, это тот же двухтрубный амортизатор, только в нём вместо воздуха присутствует под небольшим давлением до 3 атмосфер газ, препятствующий вспениванию масла.

Следует также отметить присутствие на рынке конструкций друхтрубных и однотрубных амортизаторов с надетой на них дополнительной пружиной и регулировочной гайкой. Подтягивая или ослабляя эту гайку, можно регулировать дорожный просвет автомобиля.

Газовый с выносной камерой

Существуют также газовые амортизаторы с компенсационной камерой, находящейся вне.

Газовый амортизатор с выносной камерой позволяет увеличить объём масла и газа без увеличения габаритов амортизатора. Благодаря такому решению появляется возможность увеличить рабочий ход штока, установить дополнительные системы клапанов для масла, текущего из рабочего цилиндра в выносную камеру.

Это дает большие возможности регулировки жесткости при необходимости.

Как видим, существует достаточно много видов и конструкций амортизаторов. У каждого из них имеются свои положительные качества и свои недостатки. Выбор сделать непросто. Рекомендую в первую очередь учитывать состояние дорог, тип привода машины, манеру езды, условия эксплуатации. Счастливой дороги!

Видео “Что такое амортизаторы для автомобиля”

В данном видеоролике рассказывается о том, как делают амортизаторы для автомобиля, и для чего они нужны.